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Convergence of Upwind Schemes 
for a Stationary Shock 

By Jens Lorenz* 

Abstract. A nonlinear first-order boundary value problem with discontinuous solutions is 
considered. It arises in the study of gasflow through a duct and allows, in general, for multiple 
solutions. New convergence results for three difference schemes are presented and the 
sharpness of numerical layers is established. For the EO-scheme, stability of a physically 
correct solution with respect to time evolution is shown. 

1. Introduction. In this paper we analyze three difference schemes applied to a 
shock problem 

(1.1) d f(u(x)) + b(x, u(x)) = 0, 0 < x < 1, u(0) = yo, u(l) = Y1 

Since the differential equation of first order is supplemented by two boundary 
conditions, we have to make precise what is meant by a solution of (1.1). In the case 

(1.2) bu(x, u) >, j > 0 on [0, 1] x R 

this is easily done: for all E > 0 the second-order problem 

(1.3) -cu" + f (u)' + b(x, u) = O. x < X < 1, U(0) = zoo U(l) = Y1, 

is uniquely solvable and the solutions UL tend to a limit function U of bounded 
variation. U is considered as the solution of (1.1). Motivated by the considerations 
in [3], we are also interested in cases where the condition bu > 0 is violated. The 
one-dimensional duct flow equations for an inviscid gas can-for the stationary 
state-be reduced to a scalar equation for the velocity u, which has the form (1.1) 
(see, e.g., [16]). The condition bu > 0 is violated, e.g., for a converging-diverging 
duct. We make precise below what we understand by a solution of (1.1) in this case. 
Since (1.1) describes the stationary states of the hyperbolic problem 

Ut + f (u)x + b(x, u) = 0. 0 < x < 1,9 t > 0. 

(1.4) u(0, t) = Yo, u(I, t) = 'yl, t > 0, 

u(x9O) = (x), 0 < x <- 1,9 

the question of stability with respect to time evolution is also of interest. If bu > 0, 
the solution U is stable; in the converging-diverging duct problem there are often 
two solutions, U(1) and U(2) with shocks; U(1) is unstable [3]. It seems to be very 
likely that the solution U(2), which has its shock in a region where bu > 0, is stable, 
but this has not yet been shown rigorously. 
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Possibly the simplest numerical methods for (1.4) are explicit difference schemes 

-(UX n+- u) + 
I 

j g(un 1, Un) -g(un, uUn1)} 

(1.5) +b(ihUn)=0, 1=i m, 
n?1 0 n+1- 

U0 = 
you 

Um+1 = Y1- 

Here h = 1/(m + 1), X > 0, us f(ih), and Uo approximates u(ih, nT). The 
function g(-, ) is a numerical flux function used to discretize the term f(u)x. 

We are particularly interested in the flux functions 

(1.6) 9(u ) (max~f (w): u < w < v} u < v, 
min f (w): v < w < u} v < us 

of Godunov (e.g., [12]) and 
u v 

(1.7) g(u,v)= min f'(s),0} ds+f max(f'(s), 0 ds 

of Engquist-Osher [4], [13], [14]. Since these are monotone schemes it is known that 
they lead to approximations converging in LI-norm, at least if b 0 and if no 
boundary conditions are present [2]. For the stationary case with Dirichlet boundary 
conditions (the n-dependence in (1.5) is dropped) convergence in Ll-norm has been 
shown in [9] for all monotone schemes if be > t > 0. (See [1] for relevant analytical 
discussions.) These results do not make use of the upwind nature of the EO- and the 
G-scheme. More specific convergence results for the EO-scheme and an O( h2 )-mod- 
ification have recently been shown in [10] under restrictive assumptions. This paper 
continues [10] and contains a number of new results for the stationary shock 
problem and discretizations of it. 

1. An essential assumption for the convergence result in [10] was that the discrete 
solution 

(Ui) = (uh) 

of the EO-scheme is monotone with respect to i. In this paper, we can drop this 
condition completely, allowing for applications to the duct flow problem. Essentially, 
we can reduce the whole discussion to the consideration of a 2 X 2 nonlinear 
algebraic system and obtain the same convergence results as in [10]. Especially, it is 
again established under the milder conditions that a numerical layer for the 
EO-scheme contains at most two mesh-points. Values at other mesh-points converge 
uniformly with order h. For the modification of the EO-scheme introduced in [9], 
[10] a similar result is shown with O(h 2)-estimates. 

2. The same convergence proof goes through also for the G-scheme. We show even 
more: Under the conditions made, the values uC of the G-scheme and the values u E 

of the EO-scheme coincide exactly, with the exception of only one value at an 
interior layer. The G-scheme marks an interior layer even sharper than the EO- 
scheme, namely by only one mesh-point. (It should be pointed out, however, that the 
EO-scheme gives a Cl-numerical flux function, whereas the flux function for the 
G-scheme is only Lipschitz continuous. This makes Newton's method difficult for 
the G-scheme, since one has to distinguish between right and left derivatives.) 
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3. In a situation as in the converging-diverging duct problem we show for the 
three schemes existence and local uniqueness of a discrete solution (uh) converging 
to the probably stable solution U(2). We can show rigorously that the discrete 
solution (uh) of the EO-scheme is stable in the sense that all eigenvalues of the 
linearization of the EO-system at (ut) are positive. Thus, for the method of lines 
system 

dtu(t) + Th(u(t)) = 0, t > o, 

the stationary solution uh close to U 2) is an attractor. Here Th denotes the 
EO-discrete analogue of (1.1). 

2. The Continuous Problem. In this section we define a solution concept for 
problem (1.1), give a physical example arising in duct flow, and then describe the 
detailed assumptions under which the behavior of the difference schemes shall be 
analyzed. With NBV we denote the space of all functions u of bounded variation on 
[0, 1] which are normalized such that 

U(X) = U(X +) VX E [0,1), u(1) = u(1-). 

Furthermore, let sg a = -1, 0, + 1 for a < 0, = 0, > 0. Motivated by Theorem 1 of 
[10], we adopt the following definition: 

Definition 1. Any function U E NBV which satisfies the following three conditions 
is a solution of (1.1): 

(i) Jo { f(U)4V - b(x, U)} dx = 0 VA e CO (O, 1). 
(ii) For all discontinuities y E (0, 1) of U 

sg(U(y +) - U(y -))(f(U(y)) -f(k)) < O 

holds for all k between U(y + ) and U(y -). 
(iii) At the boundary points i = 0 and i = 1 

0 < (-l)'+1sg(U(i) -yi)(f(U(i))-f (k)) 

holds for all k between U(i) and yi. 
We note that (ii) is a special case of Oleinik's condition (E), see [12], and (iii) is a 

special case of conditions at the boundary described in [1]. To our knowledge, 
existence and uniqueness of U has only been shown for bu > p > 0, see [101. We 
accept the solution concept of Definition 1, however, also in cases where bu > 0 is 
violated. This is motivated by the following example. 

A gasflow problem. With A(x), 0 < x < 1, we denote the cross-sectional area of a 
duct. Let p, u, e, and p denote density, velocity, specific internal energy, and 
pressure. If heat conduction is neglected, the inviscid equations of conservation of 
mass, momentum, and energy read in the stationary case (e.g, [7], [15]): 

puA 

(2.1) t (pe + p2 +p)uA + 
2ePyPu 
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For definiteness, let p be given by the perfect gas law, p = (y - 1)pe, where -y > 1 
is constant. With the two constants 

c0= puA, H= ye + 2 

the variables p, e, and thus p can be eliminated from the momentum equation. This 
yields 

(2.2) (Y + 1 2H)' A'(x) ( 2H)= 

where for physical reasons 0 < u < 2H. If we try to prescribe u(0) = yo, u(l) = Yi, 
we arrive at a problem (1.1). Here f(u) = (y + 1)u/(y - 1) + 2H/u is convex and 
b(x, u) = A'(x)(u - 2H/u)/A(x) fulfills the crucial condition bu >? 0 for unique- 
ness only if the duct is diverging. If a solution u(x) of (2.2) has a discontinuity at 
some 0 < y < 1, then 

f(u(y -)) =f(u(y +)) 

and u(y -) > u(y + ). This follows from conditions (i) and (ii) of Definition 1. 
Any solution u of the scalar equation (2.2) gives rise to a solution (p, u, e) of the 
system (2.1). One can show that (p, u, e) satisfies the Rankine-Hugoniot jump 
condition for the stationary system (2.1) and also satisfies the entropy condition at 
the jump y, i.e., 

u(y -)-c(y -) > 0 > u(y +) - c(y +). 

Here c = {(y - 1)(H - u2/2)}1/2 denotes the local speed of sound. 
In our opinion, these considerations justify-at least partly- the reduction of the 

system (2.1) to a scalar equation and the solution concept for the scalar equation. It 
is not claimed, however, that time stability for the system (2.1) is equivalent to time 
stability for the scalar problem. 

Led by the above example,we now make the conditions precise under which the 
behavior of the difference schemes shall be analyzed. Let (1.1) be given with smooth 
functions f (u), b(x, u) and assume 

Al. For some u* e R, a(u)-f '(u) > 0 holds for u < u*. 
A2. yo > u* > yl 
A3. The solutions U, and Ur of 

U,(0) = 70 f (U,)' + b(x,U,) = 0, 

Ur (1) = Y1, f (Ur)' + b (x, Ur) = 0 

exist on [0, 1] with 

U,(x) > U* > Ur(x), 0 < x < 1 

Condition A2 means supersonic inflow and subsonic outflow in the gasflow exam- 
ple. Condition A3 can be relaxed, but it is important that U, and Ur have a common 
interval of existence; otherwise phenomena like corner layers can appear, which will 
not be analyzed in this paper. Under the above conditions a crucial quantity is (see 

[5]) 

J(x) = f (U(x)) -f((4(x)) 0 < X < 1. 
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FIGURE 1 

If J(x) > 0 in [0, 1], then U = U, solves (1.1) and if J(x) < 0 in [0,1], then U= U= 

solves (1.1),as is easily seen by checking condition (iii) of Definition 1. If J(y) = 0 
for some 0 < y < 1, then the discontinuous function 

(2.3) X() U,() x < y, 

solves (1.1). In the gasflow problem for a converging-diverging duct the function 
J(x) often has two zeros Yi and Y2 with 

A'(yj) < 0 < A'(y2). 

This leads to three solutions of (1.1): one solution equals U,(x) for x < y1 and Ur(x) 
for x > Yi; the second equals U,(x) for x < Y2 and Ur(x) for x > Y2. These are 
sketched in Figure 1. There is a third solution which equals Ur(x) for 0 < x < 1. It 
corresponds to a solution with a boundary layer at x = 0 for problem (1.3) and is 
considered irrelevant here, since it contradicts our assumption of supersonic inflow. 
The observation about two (or more) shock solutions for the duct flow problem is 
due to [3]. With the interesting idea used in [3] for the model problem 

Ut + {uuX = a(x)u, 

one can show that any shock solution of (2.2) with a shock at Yi' A'(yl) < 0, is 
unstable as a solution of (1.4). 

3. Analysis of the EO- and the G-scheme. On a uniform mesh with step-size 
h = 1/(m + 1), the discrete equations for (1.1) read 

(3.1) ~(Tu)i - g(Ui+19 U,)-g(u1, Ui,1) + b(ih, ui), i = 1,..., m, 

(Thu)o uo = yo, (ThU)m+i Um+i Y1 
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For the G-scheme, g is given in (1.6); for the EO-scheme, g is given in (1.7). Under 
the assumption Al of Section 2 the functions g simplify. Without loss of generality, 
we take c = u* in (1.7) and assume f(u*) = 0. Then 

A1(v), u > u*, v > u*, 

EOI\, ) 10 > * < 
gE(,V A f () + f v), u < u*, v >' u*, 

gf(u), ) u <u*, v < u*, 

G(UV) = f ( {(u), f (v), u < u*, v > u*, 
gG9 u~v ( f( u, fv ), otherwise. 

Our main convergence result for the EO-scheme is: 

THEOREM 1. Let conditions Al to A3 of Section 2 hold and let J(x) f(U1(x)) - 

f (UV(x)) vanish at somey E (0, 1) with J'(y) < 0. Especially, the function U(x) given 
in (2.3) solves (1.1). Then for h < h0 the EO-system has a solution uh = (Uh) 

converging to U with the following estimates: For some C independent of h and an 
indexj = j(h) 

| U(ih) )-i _ Ch, O _< i < j -1, 

|Ur (ih) - i | C, j+ 2 < i < m + 1,U *>Uj^+19 

|j(h) h- y| Ch 
holds. 

In our proof we apply the method of upper and lower solutions to a mapping 4: 
R 2 9. 2, Since this useful principle is crucial for our arguments we first establish it 
for completeness. For vectors v, w E R k define 

v < w 4 vi < wi for i=1 . .., k. 
If 4: DR k -4 R k is a nonlinear operator, then v E R k is called a lower solution of the 
equation 4u = 0 if ov < 0. Similarly, ow > 0 means that w is an upper solution. 
The following lemma is essential. 

LEMMA 1. Let 0: R k Di k be continuous and outer-diagonally decreasing, i.e., for 
allj # i the scalar functions 

Ui 
- j (U* UO . * Uk) 

are monotonically decreasing for all u1,..., uj_1, ui+1,. .., uk fixed. If there exist v, 
w E R k with v < w, 0 v < O < w, then the equation p u = 0 has a solution iu with 
v < u < w. 

Proof. Let L = {u E Rk: 4U < O. V < U < W} denote the set of all lower solu- 
tions between v and w. For i = 1,..., k define componentwise 

i= su -u:uL). uT= sup{ u : u E L 

It is not difficult to see that Opu = 0. 
Proof of Theorem 1. 1. First define discrete values uil = ub, uir = uir in analogy to 

the continuous functions U1, Ur by the two-point relations (upwinding): 

u01= yo, f(uj,)-f(uj_,1) +hb(ih,u,) = 0, i = 1,2,...,m + 1; 

Umn+1,r = y1, f (ui+l,r) -f (Uir) + hb(ih , Uir) = 0, i = m, m -1, ... ,0. 
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If h < ho it is clear that these values are uniquely defined with uil > u* > Uir and 

max I U,(ih) -uil < Ch, max IUr(ih) - UirI < Ch. 
1 1 

2. The basic idea of the proof is the following: Fix h < ho and consider for fixed 
j E {1, . . ., m - 1) the 2 x 2 system (with g given in (1.7)): 

(3.2) {g(uj?2, uj)-g(uj, uj_1,u) + hb((jh, uj) = O ) 

g(Uj+2,r, Uj+J - g(Uj+l, Uj) + hb(( j + 1)h, uj+i) = 0 

for (u;, uj+l ) E- R2. Suppose we can find a j so that this system has a solution 

( -U, -uj+ 1) with 

(3.3) Uj > U* >UUj+ 1 

Then the grid function 

{Uil, ij- 1 

(3.4) Ui= Ui =j,1+1, 

Uir, i > j + 2, 

solves the EO-system! Thus the crucial question is: For which j has the 2 x 2 
system (3.2) a solution with (3.3)? We define an 0(h)-approximation to J(x)= 

f (U,(x)) - f(Ur(x)) by 

ih(i)= f(ui,11) 
- 

f(Ui+ ,r) 
- 

hb(ih, u*). 

Since J(y) = 0 and J'(y) < 0, there is an index j = j(h) with Ij(h)h - = 0(h) 
and Jh(j) > 0 > Jh(j + 1). We claim that for such a j the 2 X 2 system 

31(p, q) g(q, p) -g(p, uj-11 ) + hb(jh, p) = 0, 

(2(p, q)gg(Uj+2r, q)-g(q, p) + hb((j + 1)h, q) = 0 

has a solution (p, q) with p ?> u* > i. 

3. First note that 4 is outer-diagonally decreasing, i.e., D201 < 0, D102 < 0, since 

Djg < 0 < D2g. Thus the method of upper and lower solutions can be applied to 
the system 'p(p, q) = 0. Now note ujl > U* > Uj+i r and thus 

1(u*, Uj+lr) = r(Uj+1 ,ru*) - g(u*, uj11,) + hb(jh, u*) 

= f(uj+ ir) - f(uj1 ,1) + hb(jh, u*) = -Jh(i) < 0, 

(2(U*, Uj+lr) = g(Uj+2,r, Uj+lr) - r(Uj+r U*) + hb((j + 1)h, Uj+lir) 

= f(Uj+2,r)-f (Uj+lir) + hb((j + l)h, Uj+lir) = 0, 

and, similarly, 

1(U11, U*) = O. 02(u1 U*) = -jh(j + 1) >? 0. 

Therefore, there is (pf, q) with qfi, q-) = 0 and 

u* < p < UjI, Uj +1, r < q < U 

Especially, (-ui, -uj = (p, 4) satisfies (3.3), which completes the proof. El 
What changes if we consider the G-scheme instead of the EO-scheme in a 

situation as described in Theorem 1? Essentially the same convergence result holds, 
but the layer becomes even sharper. The EO-values and the G-values coincide 
exactly except at two mesh-points. 



52 JENS LORENZ 

THEOREM 2. Under the conditions of Theorem 1 for h < h0 the G-system has a 
solution u h = (u h) converging to U with the following estimates: For some C indepen- 
dent of h and an index k = k(h) 

I Uj ih )- I , Ch, O _< i < k, 

|Ur(ih)-uI | Ch, k + 2 i< m +1, 

k(h)h -y < Ch 

holds. Furthermore, if (Ui E) and (uG) denote the constructed solutions of the 
EO-system and the G-system, respectively, then 

(3.6) u, = UG forj yi/j + 1, 

wherej = j(h) is specified in Theorem 1. 

Proof. 1. Let (uil), (Ur) Jh(i) and j = j(h) with I j(h)h - y= O(h) and 

Jh(j) > O > Jh(j + 1) 

be constructed exactly as in the proof of Theorem 1. Consider again the 2 x 2 
system (3.2) where g is now the G-function (1.6). If (3.2) has a solution (U., Uj+1) 
with (3.3), then again the grid function (3.4) solves the G-system. In (3.5) we rewrote 
(3.2) as 

(3.7) O(uj, U1+1) = ( p, q) = 0. 

Again p: R 2 jJ 2 is outer-diagonally decreasing, and 

( U*, U + 1,r) < (0? 0) < 0 ( UJI U*). 

The method of upper and lower solutions therefore establishes existence of a 
solution (U-., U.+1) of (3.7) with 

U* Uj < U./ U + ulr < Uj+1 < U 

Since (3.3) is satisfied, we have shown existence of a solution (us) of the G-system 
with 

UG =U, 
E l 

< j -1 

uG U = U i > j + 2. 

2. By (3.7) we have for the G-values: 

0 = 01(uj, uj+1) = maxf f (UJ) f (U1+?)} -f1(u11) + hb(jh, UJ) 

0 = k2(uj uj+1) =f(uj?+2r) - max f (U1) f (U+)} + hb((j + 1)h, U1+1). 

If f(u+ 1) < f(u1), then the equation 0 = 01(u., uj+1) reads 

f (U) -f (U_1 1) + hb(jh, U1) = 0, 

and thus U1 = UJ1 by definition of (ui). Similarly, if f(u1y1) f f(U), then the 
equation 0 = 42(u9, Uj+1) yields U,+1 = Uj+l r. This shows that in both cases the 
shock is marked by only one mesh-point. Therefore, the above convergence result is 
proved with k = j - I or k = j. El 
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FIGURE 2 

Essentially, Theorems 1 and 2 show convergence of order h in maximum norm 
and sharpness of the numerical layer for the EO-values and the G-values, if the 
shock is at a position y E (0,1) with J'(y) < 0. Since 

J (y) = f (U,(y)), t(Ur(y))I 

= b(y, Ur(y)) - b(y, U,(y)) 

= b.(y, )(U(y) -U(y)), 

and U,(y) > U4(y), we find J'(y) < 0 to be satisfied if the usual sign restriction 
b"(x, u) > 0 is fulfilled at the position x = y of the shock. In Theorems 1 and 2 we 
only stated existence of a solution Uh closed to U. If the condition bu > 0 does not 
hold globally, then global uniqueness cannot be expected, in general, as the duct 
flow problem shows. In order to formulate a local uniqueness result we define for 
p > 0, a > 0, y E (0,1), a set 2(h, p, a, y) c Ro"2 of mesh functions u = (uj) by 

u E Q(h,p,a,y) iff IU,(ih) - upi< p forih y -a, 

I U,(ih) -ui| < p for ih > y + a. 

By the convergence result of Theorem 1 we know that for any p > 0, a > 0 there is 
h 0> 0 such that the EO- and the G-systems both have solutions uh in f (h, p, a, y) 
for h < h0. We now state a local uniqueness and stability result. For the conditions, 
see Figure 2. 

THEOREM 3. Let the conditions of Theorem 1 hold and assume p > 0, a > 0 are 
fixed such that 

min U,(x)-p > U*, 0 < x < y-a, 
x 

max Ur(x) + p < u*, y + a < x 1, 
x 

(3.8) bu(x, U) > f fory - 2a < x < y + 2a, u E R. 
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Then for h < h0 the EO- and the G-systems have exactly one solution uh in 
Q2(h, p, a, y). The solution Uh of the EO-system is stable as t -* + 0o for the method of 
lines system (1.8). 

Proof. We give the proof only for the EO-system. The G-system can be treated 
similarly. 

1. Let p = p(h)E {O. ,..., m + 1) be the largest index with p < y - a and let 
q = q(h) be the smallest index with q > y + a. With (uh) = Uh we denote a solution 
in S2 = Q(h, p, a, y). By definition of Q, we have u' >> u* for i < p and uh < u* for 

> q, and therefore 

uh = uhl for i < p - 1, uh = u h for i > q +1. 

(uth and Uh are defined in the proof of Theorem 2.) Now make h so small that the 
mesh-points (p - 1)h and (q + 1)h lie in the interval [y - 2a, y + 2a]. By condi- 
tion (3.8) the discrete problem 

g(u,+l, j) - g(uj, ujrl) + b(ih, ul) = O. p < i < q , 
Up-1 = Uh_1, Uqq+i U= rh 

is uniquely solvable [8], [14]. This shows that for h < ho all solutions Uh in S2 must 
coincide with the solution constructed in the proof of Theorem 1. 

2. For the solution uh in S2 we have by Theorem 1: 

uh> u* for i < j, uh < u* fori > j + 1 

for some j = j(h), Ij(h)h - yj = O(h). Therefore, the linearization at uh is a 
matrix of the following form: 

1 

0~~~~~ 

< * d,_ 

Th'(uh) = = dX= * 

dy+dm * 

The diagonal elements are 

dIl=ha~u* | lab(ii* with d, > a/h + 0(1), ar> 0, for j + i # j + 1. Furthermore, 

s=h laUJ+)| = h au ) | 

and thus the positive definiteness of the connecting 2 x 2 block follows from (3.8) 
and jjh- y= O(h). E 
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Extensions. In [10, Theorem 3.1], we also gave convergence results for the 
EO-scheme in cases where 

J(x) = f(U(x)) -f(Ur(x)) 

does not vanish in (0, 1). Then interior discontinuities for a solution U of (1.1) are 
not possible, but U does, in general, not satisfy both boundary conditions. (For 
E > 0 a boundary layer occurs.) The technique used in Theorem 1 of discussing a 
2 x 2 nonlinear system to get a convergence result can be used in all cases treated in 
[10, Theorem 3.1]. Thus one can drop the condition b(x, 0) 0 which we needed in 
[10] to guarantee a monotonic discrete solution (uh). The convergence results are the 
same as those stated in [10, Theorem 3.1]. 

4. Analysis of the O(h2)-Modification of the EO-Scheme. In [9], [10] a three-point 
modification of the EO-scheme was introduced where the source term b(x, u) is 
switched also. With g given by (1.7) the scheme reads 

I 
{ g(ui,,, ui) - g(ui, ui-1)} 

(4.1) +37ilb(xi-1, uj_) + (1 -/3i - /3P)b(xi, Ui) 

+#+jlb(xi+lg ui+) = 0 i = , 
Uo = Yo' UM+1 = Y1- 

Here xi = ih and the coefficients /37, 8,+ are defined by 

/i = B(Ka(ui)//), pi = B(-Ka(ui)/f) 

where a(u) f'(u). 
B(r) is the Cl-function 

0O for r < 0, 
l r2 for O < r < 12 

B(r) I i - _ -r)2 for 2 < r < 1, 
2 ~~~~2 - 

1l for r> 1 

connecting the values 0 and 2. K > 0 is a parameter which can be taken indepen- 
dently of h as follows. Let co < u < cl denote an a priori region containing all 
u-values of interest. Furthermore, let 

Ibu(x, u) I < M1, la'(u)b(x, u) I < M2 in [0, 11 X [co, c1l]. 

As shown in [9], [10], any choice of K and h with 

(4.2) 0 < K < 1/2X/-,, h < 4 2/M2 

leads to an operator (4.1) which is outer-diagonally decreasing in the a priori 
domain. 

In the next theorem, we assume 

O < Ur(x) < Uw(x) < cl fornf < x < 

and we let K be fixed with (4.2). 
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THEOREM 4. Under the conditions of Theorem 1 and for h sufficiently small the above 
scheme has a solution Uh = (Uh) converging to U with the following estimates: for some 
C independent of h and an index = j(h) 

|Ujih)-ui |Ch2, 0 < i j -1 

Ur(ih) - | Ch2, j + 2 < i < m + 1, 

I u(h)h -y < Ch 

holds. Furthermore, a local uniqueness result as in Theorem 3 is valid. 

Proof. The proof follows the same steps as the proof of Theorem 1. We only point 
out some differences. The values uil, Uir are determined according to 

U01 = 70, f(ul,) -f(u,11) + 2 {b(x-1, u,1,, ) + b(xi, uJ,)} = 0, 

i = 1 , 29 . .. , m + 1 ; 

Um+lr = 71, f(u?+lr) -f(uir) + 2 {b(xg, ur) + b(x,+l, u,+?r)} = 0, 

i=m, m-1, ... 0. 

They are O(h 2)-close to U, and Ur, respectively. 
The 2 X 2 system to be solved for (p, q) = (uj, uj+1) reads 

cp1(pq) = 02(pq) = 0 

with 

k 1(P. q) = g(q, p) - g(p, uj_1,) + 2 b(X1, uj11) 

+h{1 - B(Ka(p)/x/hT)}b(xj, p) 

+hB(-Ka (q)/-) b (xj + 1 q) 

42(p, q) = 
g(Uj+2,r q) - g(q, p) + hB(Ka( p)/V_)b(xj, p) 

+h{1 - B(-Ka(q)/T)} b(xj+1, q) 

+ hb(xj+2, Uj+2,r). 

Again, one has to determine an index j = j(h) for which the system 4(p, q) 0 has 
a solution (p, q-) with]p> u* > q. To find j = j(h), we define 

Jh(i) = f(Ui-l,,) -f(ui+lr) 

- { b(xi-1, ui1,, ) + hb(x,, u*) + 2hb(xi+l Ui+lir)} 

Then there exists j = j(h) such that 

Jh(j) >0 > Jh(j + 1), j(h) h-y I 0(h). 

For this j there are upper and lower solutions for 4(p, q) = 0, namely 4(u*, uj+lr) 

< (0,0) < 0(ujj, u*). 4 is outer-diagonally decreasing; this follows by the same 
estimates which show that the operator (4.1) is outer-diagonally decreasing; see [9], 
[10]. Only here the upper bound for K is crucial. 
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